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INVITED ARTICLE

Flow and reorientation in the dynamics of nematic defects

Andre� M. Sonneta and Epifanio G. Virgab*

aDepartment of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, Scotland,

UK; bDipartimento di Matematica and CNISM, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy.

(Received 27 March 2009; final form 9 May 2009)

We propose a simple phenomenological model for hydrodynamic defect dynamics in nematic liquid crystals,
inspired by the Ericksen–Leslie theory. We identify the main forces that govern both fluid and defect motion
and we comment on their symmetry. As shown for two annihilating disclinations, our model is predictive for
arbitrary length scales and topological charges.

Keywords: nematic liquid crystals; defect dynamics; disclinations; Ericksen–Leslie equations

1. Introduction

Topological defects and their dynamics play an impor-

tant role in liquid crystals. Here, in particular, we are

concerned with nematic liquid crystals for which
defect dynamics is easily accessible experimentally, as

typical timescales are very convenient and boundary

conditions can be well controlled. From the theoreti-

cal side, the Ericksen–Leslie equations that govern the

hydrodynamics of nematic liquid crystals are well

established (1, 2): they couple the flow field v and the

evolution of the nematic director n.

In a nematic liquid crystal, the motion of a defect
can have two different origins: material transport of

the defect due to fluid flow and displacement due to

director reorientation. For problems without external

sources of flow, most workers in the past have

neglected flow effects and considered only the reorien-

tational dynamics. A common assumption was that

backflow, that is, the flow induced by reorientation,

would merely lead to a reduction in the rotational
viscosity, thereby effectively speeding up the reorien-

tation process. The importance and the role of back-

flow in defect dynamics has already been appreciated

in (3), and it has received more attention in (4–6).

Experimental evidence for an asymmetry in the

motion of annihilating defect pairs cannot be

explained with pure reorientational dynamics (7–9).

However, the presence of defects leads to severe
problems in Ericksen–Leslie’s equations. The director

field at a defect is undefined and divergences in the free

energy and dissipation densities usually require a cut-

off at the defect core. Numerical schemes fail because

of discretisation errors due to diverging gradients at

the defects. The numerical works presented in (4–6)

have therefore resorted to a Landau model that avoids

singularities but introduces a natural length scale, the

nematic coherence length. On present-day computers,
this limits the applicability to sample sizes in the

micrometre range, but it can reasonably be expected

that similar results would hold also for larger defect

distances. This conjecture has not yet been shown to

stand on firm ground.

Here we pursue a different approach. We propose

a model for defect dynamics in nematic liquid crystals

that includes backflow. It is valid when the director
reorientation is the source of fluid flow. Our analysis is

based on the Ericksen–Leslie equations and hence

there is no principle restriction on the size of the

domain. We treat the problem associated with diver-

gences at the defects in a way that is similar to that

used in statics and reorientational dynamics, i.e. by

introducing a suitable cut-off where necessary. The

reorientation dynamics is treated as if it were unaf-
fected by the backflow. For the flow itself, we assume

that there is a neighbourhood of the defect in which

the fluid moves with homogeneous velocity. The

apparent velocity _x of the defect is then _x ¼ vþ u,

where v is the instantaneous velocity of the fluid at

the defect and u is the velocity of the defect that is due

to reorientation.

The paper is organised as follows. In Section 2, we
identify the forces acting on a moving defect, of either

elastic and dissipative origins. In Section 3, we com-

pute these forces for a model problem, where two line

disclinations with opposite topological charges move

towards each other. In Section 4, we draw conclusions

from the analysis of this example which are likely to be

valid in general.
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2. Forces on a nematic defect

In this section, we present our approximate phenom-

enological model for the dynamics of a nematic defect.

The model is based on the balance of all forces acting

on the defect.

2.1 Ericksen–Leslie equations

Ericksen–Leslie theory can be formulated conveni-

ently in terms of a free energy Wðn ;�nÞ per unit

volume and a Rayleigh dissipation function R,

R ¼ 1

2
�1n
� 2 þ �2n

� �Dnþ 1

2
�3ðDnÞ2 þ 1

2
�4tr D2

þ 1

2
�5ðn �DnÞ2;

ð1Þ

where the �i (i ¼ 1; . . . ; 5) are viscosity coefficients, D

is the symmetric part of the velocity gradient, and n
�

is

the co-rotational derivative of the nematic director n.

The equations of motion then take the form (10)

@R

@ n
� ¼ div

@W

@�n
� @W

@ n
þ �n ð2Þ

and

�v� ¼ divT ; ð3Þ

where � is a Lagrange multiplier and

T ¼ �pI þ T ðeÞ þ T ðvÞ ð4Þ

is the stress tensor. Here p is the hydrostatic pressure,

to be determined so as to make the flow isochoric,

divv ¼ 0: ð5Þ

Moreover,

T ðeÞ :¼W I � �nð ÞT @W

@�n
ð6Þ

is Ericksen’s elastic stress (11, 12), and

T ðvÞ :¼ 1

2
n #

@R

@ n
� �

@R

@ n
� # n

� �
þ @R

@D
ð7Þ

is the viscous stress.

2.2 Phenomenological model for defect dynamics

Rather than attempting the daunting task of finding

an exact analytical solution to Equations (2), (3) and

(5), we use these equations as guidance to assess the
dynamics of defect motion. To start, we make the

approximation that the reorientation process does

not depend on the flow. This seems reasonable as

long as the flow is a secondary phenomenon that is

caused by the reorientation. Then, the reorientation

velocity u can be determined in the usual way by con-

sidering Equation (2) only.

To assess the flow velocity at the defect, we imagine
that there is a neighbourhoodB of the defect that moves

with velocity v due to material flow, and we consider the

balance of forces onB. Care has to be taken because the

divergence theorem is not applicable to regions that

contain defects. Hence, forces on a region B that con-

tains a defect cannot be determined by Equation (3), but

the traction Tn has to be integrated on @B, where n
is the unit outer normal to @B. While this might seem
slightly counterintuitive, it actually makes the notion of

a force on a defect meaningful. Take, for example, the

equilibrium director field of a pair of defects at a fixed

distance. The divergence of the elastic stress (6) vanishes

for static solutions of (2), but still the integral of the

traction yields a non-zero force on each defect (12).

Moreover, this force is the same on any contour that

contains just a single defect, and so it should indeed be
interpreted as a force on the defect.

We regard the stress tensor as the sum of three

parts,

T ¼ T ðeÞ þ T ðrÞ þ T ðdÞ; ð8Þ

where T(e) is the elastic stress as above,

T ðrÞ :¼ 1

2
�1ðn # n

� � n
�

# nÞ ð9Þ

is the part of the viscous stress that is caused by

reorientation in the absence of flow, and T(d) is the

remaining part of the stress including also the hydro-

static pressure. TðdÞ stems from terms in the dissipation

that are proportional to the stretching D.

The forces

f ðeÞ :¼
Z
@B

T ðeÞn dA ð10Þ

and

f ðrÞ :¼
Z
@B

T ðrÞn dA ð11Þ

depend on the director field and the reorientation

process, in particular f ðrÞ / u . Since T(d) depends in

1186 A.M. Sonnet and E.G. Virga

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



an intricate way on the flow field, knowledge of a full

solution to Equations (2), (3) and (5) would be

required to compute the force

f ðdÞ :¼
Z
@B

T ðdÞn dA ð12Þ

exactly. Here, we assume that it gives rise to a drag

force on the defect that opposes the material motion of

the defect,

f ðdÞ ¼ ��v : ð13Þ

We regard � as a phenomenological constant that may

depend, for example, on the topological charge of the

defect and details of the geometry, such as the distance

between annihilating defects.

To summarise, when inertia is neglected, the fol-

lowing balance equation is satisfied along the flow

f ðeÞ þ f ðrÞ þ f ðdÞ ¼ 0 ; ð14Þ

where f(e) depends only on the director distortion,

while

f ðrÞ / u and f ðdÞ / �v : ð15Þ

This allows one to determine v and then _x ¼ u þ v

gives the defect velocity.

2.3 Symmetry and parity

In defect annihilation, further knowledge can be

gained on the forces f (e) and f (r) acting on the two
defects, as they enjoy specific symmetry properties.

We consider a pair of defects of opposite topological

charge that lie on a common symmetry axis e. Then all

forces are along this axis. Further symmetry properties

arise if the director field n+ around one defect can be

mapped into that around the other n-, by means of the

parity transformation

n� ¼ Rnþ; ð16Þ

where

R ¼ I � 2e # e ð17Þ

is the reflection about the plane orthogonal to e. It can

easily be deduced from Equations (9) and (11) that

f ðrÞ� ¼ f ðrÞþ; ð18Þ

whereas, in the one elastic constant approximation, it
follows from Equation (10) that

f ðeÞ� ¼ � f ðeÞþ: ð19Þ

This means that the elastic forces will accelerate both

defects towards each other, while the reorientational
viscous forces will speed up one of the defects and slow

down the other.

3. Disclination annihilation

While the concepts outlined above are fairly general

and may be applicable to different classes of materials,

they are best illustrated by example. To this end, we

consider the annihilation of a pair of straight disclina-

tion lines with opposite topological charges s and -s.

For disclinations in the z-direction, the director can be
written as

n ¼ cos’ex þ sin’ey: ð20Þ

We assume that the evolution is described in the near-

field limit so that the orientation pattern for any
defect distance minimises the elastic free energy,

which we take in the one-constant approximation.

Then, if the two disclinations intersect the ðx; yÞ-
plane at ðx ¼ �a; y ¼ 0Þ, ’ takes the explicit form

(see, e.g., (13))

’ ¼ s arctan
2ay

x2 þ y2 � a2
; ð21Þ

where a ¼ aðtÞ. Equation (21) is a good approxima-
tion to the dynamical director field close to the defects.

Further away, the solution given in (14), and also used

in (15), should be employed instead.

To assess the reorientation dynamics, we neglect

flow and make use of the dissipation equality that

states that

_F þD ¼ 0; ð22Þ

where _F is the rate of change of the free energy in a

cylindrical region B of unit height traversed by both
disclinations and D ¼

R
B 2RdA is the total energy dis-

sipated in B (see (16, 17)). From (1) and (21) the

Rayleigh dissipation function is

Liquid Crystals 1187
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R ¼ 1

2
�1

@’

@a
_a

� �2

; ð23Þ

and the free energy density is

W ¼ 1

2
K j�n j2 ¼ 1

2
K j�’j2: ð24Þ

With ’ given by (21), we obtain from (23) and (24)
that

R ¼ 2�1s2y2ðx2 þ y2 þ a2Þ2 _a2

½x4 þ y4 þ a4 þ 2ðx2y2 þ a2y2 � a2x2Þ�2
ð25Þ

and

W ¼ 2Ka2s2

x4 þ y4 þ a4 þ 2ðx2y2 þ a2y2 � a2x2Þ : ð26Þ

We integrate these densities in the infinite strip

�1 < x <1, � L < y < L, excluding a small strip

� rc < y < rc, where rc is a defect core radius, see

Figure 1.

We interpret L as a cut-off length, delimiting the
region within which the defect annihilation takes

place: we expect the far fields of the two annihilating

defects to cancel each other outside this region,

although our simplified model is unable to capture

such a feature completely. Improving on (14),

Denniston proved in (15) that with an appropriately

computed far field, the annihilation time is indepen-

dent of the cut-off length. For simplicity, we have
renounced following Denniston’s approach, and con-

sequently, in our model, the annihilation time will

exhibit a dependence on the cut-off length. However,

we do not regard this as a severe shortcoming, because

differences in the far fields are only significant for

asymptotically free defects. In our context, the defects

become asymptotically free only in the final stages of

their annihilation, and so the overall effect of misre-

presenting the far field is small. We thus arrive at

D ¼ ��1s2 _a2 ln
L2ðL2 þ a2Þ
r2

cðr2
c þ a2Þ ð27Þ

and

F ¼ �Ks2 ln
L2ðr2

c þ a2Þ
r2

cðL2 þ a2Þ : ð28Þ

With (27) and (28), the dissipation equality then
becomes a differential equation for a(t):

2K

�1

L2 � r2
c

ða2 þ r2
cÞða2 þ L2Þ þ ln

L2ða2 þ L2Þ
r2

cða2 þ r2
cÞ

_a

a
¼ 0: ð29Þ

This equation does not contain s: the reorientation

dynamics is independent of the topological charge.

Equation (29) allows us to write the speed of the

reorientation as a function of the instantaneous value

of a, which is half the defect distance d = 2a. Under the

assumption that a; L� rc and setting

� :¼ �1L2

4K
; ð30Þ

we find that

_a ¼ L4

2� lnða2r2
c=L2ða2 þ L2ÞÞaða2 þ L2Þ < 0: ð31Þ

This equation allows us to estimate the time T to

annihilation in terms of the initial separation between

the disclinations and the other geometrical para-
meters. Letting

� :¼ a2

L2
and 	 :¼ r2

c

L2
; ð32Þ

we give (31) the form

1

�

1

1þ �þ ln
1þ �
	�

� �
_� ¼ 0: ð33Þ

Separation of variables together with requiring that

�ð0Þ ¼ 0 gives

+s−s

−a a

rc

−rc

−L

L

Figure 1. Domain of integration.
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Z �i

0

ð1þ �Þ ln 1þ �
	�

d� ¼ T

�
; ð34Þ

where �i is the value of � at the start of the annihila-

tion process. Carrying out the integration in (34)

yields

�T

�
¼ 1

2
�2

i þ �i

� �
ln 	� 1

2
ð2�i þ �2

i Þ ln
1þ �i

�i

� ��

þ�i þ lnð1þ �iÞ
�
: ð35Þ

Since 	� �i � 1, a good approximation to (35) is

T

�
	 ��i ln 	; ð36Þ

which, by (30), gives

T 	 � �1a2
i

2K
ln

rc

L
; ð37Þ

where ai is the value of a at the start of the annihilation

process. This estimate shows how T only moderately

depends on the cut-off length L, a conclusion which a

posteriori justifies the approximations made to arrive

at (37).

3.1 Elastic force

To assess the effects of material flow, we first consider

the disclination at x ¼ a and require that the balance

of forces (14) hold on a circular contour of radius re

centred at the disclination, where re is an effective

defect radius that is not necessarily the same as the

core radius rc.

In polar coordinates (r,#) centred at x ¼ a, y ¼ 0,
the director field n can be represented as

n ¼ cos e r þ sin e#; ð38Þ

where  :¼ ’� #. Since x ¼ aþ r cos# and

y ¼ r sin#, it follows from (21) that

 ¼ ðs� 1Þ#� s arctan
r sin#

r cos#þ 2a
: ð39Þ

In general, for any function  ¼  ðr; #Þ, we readily
obtain from (24) and (6) that

W ¼ K

2
 2
;r þ

1

r2
ð1þ  ;#Þ

2

� �
; ð40Þ

where a comma denotes differentiation, and

T ðeÞ ¼ K

2
 2
;r þ

1

r2
ð1þ  ;#Þ2

� �
I � K

�
 2
;r e r # e r

þ 1

r
 ;rð1þ  ;#Þðe r # e# þ e# # e rÞ

þ 1

r2
ð1þ  ;#Þ

2
e# # e#

�
: (41)

By symmetry of the director field, all forces are

along the x-axis, and it suffices to compute the x-

component of f (e), which, by (10), is given by

f ðeÞ ¼ ex � re

Z 2�

0

T ðeÞ e r d#

¼ Kre

Z 2�

0

1

2

1

r2
e

ð1þ  ;#Þ2 �  2
;r

� �
r¼re

cos#

(

þ 1

re

½ ;rð1þ  ;#Þ�r¼re
sin#

)
d#: (42)

By inserting (39) into (42) we obtain that

f ðeÞ ¼
� �Ks2

a
for re<2a;

0 for re>2a:

(
ð43Þ

3.2 Reorientational viscous force

To compute the reorientational viscous force, we

assume that the disclination at x ¼ a moves due to

reorientation with a speed u > 0 in the negative

x-direction. In (20), as in (38), a is a parameter

varying with time. In our model, the flow is induced

by reorientation; we thus assume that the co-rota-
tional derivative n coincides with the partial time

derivative n,t of n. Representing n as in (38), we

readily obtain that

n
� ¼ ’;t n? ¼ @’

@a
_an?; ð44Þ

where

n? ¼ � sin e r þ cos e#: ð45Þ
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By (9) and (11), we then arrive at

f ðrÞ ¼ ex � re

Z 2�

0

T ðrÞ e r d#

¼ 1

2
�1 _are

Z 2�

0

@’

@a

�
ðn � exÞðn? � e rÞ

� ðn? � exÞðn � e rÞ
�

d#

¼ � 1

2
�1ure

Z 2�

0

@’

@a
sin#d#; (46)

where we have set u ¼ � _a, since the disclination at

x ¼ a is being considered. To compute @’=@a in (46),

we first make use of (21) and then in the result convert

the variables x and y into r and #; this yields

@’

@a
¼ 2s

r

ð2ar cos#þ 2a2 þ r2Þ sin#

4ar cos#þ 4a2 þ r2
: ð47Þ

Hence, we finally arrive at

f ðrÞ ¼
� 1

2
�1�su 1þ 1

4

r2
e

a2

� �
for re 
 2a;

��1�su for re � 2a:

8<
: ð48Þ

Thus for re > 2a, when the contour contains both

defects, f (r) is independent of re. This can be inter-
preted as minus the force that the liquid crystal exerts

on its container due to the annihilation process. In

the case that is relevant for the force balance, re < 2a,

we can approximate f (r) as � ð��1su=2Þ, which is

independent of re.

3.3 Viscous drag force

To model the viscous drag force, we depict the core of

the disclination as a body submerged in the liquid

crystal. Its material motion through the surrounding

fluid would then be hampered by a resistive force of

hydrodynamic nature. To this end, we regard the core
as a cylindrical region that is instantaneously centred

on the disclination axis and whose material motion is

independent of the director reorientation. This view is

coherent with regarding the disclination core as consist-

ing of molecules in the isotropic phase. Molecules per-

ipheral to the core will in general partake of phase

transitions induced by reorientational motion of the

disclination, while molecules in the centre will be merely
conveyed by material flow. We regard the viscous drag

force as acting on the instantaneous configuration of

the core, and so as depending only on the material flow

around the disclination produced by its own motion, as

if the defect were gliding undistorted.

We recall the force on a cylinder in a Stokes flow

(18, p. 615),

f ðdÞ ¼ �2�A�eff
; ð49Þ

where 
 is the velocity of the cylinder relative to the

fluid, �eff is an effective viscosity, and

A ¼ 2= lnð7:4=ReÞ. It depends weakly on the

Reynolds number Re ¼ 2re�U=�eff , where U is a typi-
cal flow velocity.

In our context, we approximate the resistive force

experienced by the disclination as

f ðdÞ ¼ ��
 ð50Þ

with a constant �, where 
 is now the velocity of the

material that instantaneously constitutes the disclina-

tion core. The constant � can in principle be obtained,
e.g., from numerical solutions computed on a specific

length scale, such as those presented in (4, 5).

To gain information of the dependence of � on the

topological charge s, we look at the backflow that is

created by the moving disclination. When a disclina-

tion of winding number s passes a given point, the

director in that location has to rotate by s�.

Therefore, we expect that the gradient of the induced
flow will be proportional to s, and hence that the dis-

sipation associated with it will be proportional to s2.

Thus, the higher the winding number, the stronger the

associated drag force.

However, this simple argument does not distin-

guish between +s and -s defects. A better estimate

can be obtained from the incipient flow that would

be created by a defect moving undistorted in an envir-
onment that is initially at rest. For pure Frank solu-

tions, this has been computed in (19) for gliding

undistorted disclinations. For �2 ¼ ��1, the force

fields f � ¼ divT� created by moving s ¼ � 1
2

disclina-

tions are

f þ / 1

r2

�
2ðcos#� cos 2#Þe r þ ð2 sin#� sin 2#Þe#

�
ð51Þ

and

f � / 1

r2

�
2ð2 cos 4#� cos 2#� cos#Þe r:

þ ðsin 4#� sin 2#� 2 sin#Þe#
�
;

ð52Þ

1190 A.M. Sonnet and E.G. Virga

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



respectively. It is reasonable to assume that these expres-

sions reflect the symmetry of the flow field that will

eventually arise. Hence, we assume that v / f � and

compute the integral of trD2 over the region outside

the circle of radius re about the disclination centre for

both s ¼ � 1
2

, with the only purpose of estimating the

ratio of the dissipations of D�=Dþ, which we assume

also applies to the drag coefficients �- and �+. We thus
arrive at ��=�þ ¼ 858=241 	 3:56. Similar estimates

can also be obtained for a generic topological charge s.

Repeating the same considerations for the discli-

nation at x ¼ �a, we find that the balances of forces

for the two disclinations take the form

� 2�
K

d
s2 � �

2
�1su� �þ
þ ¼ 0; ð53Þ

2�
K

d
s2 � �

2
�1su� ��
� ¼ 0; ð54Þ

where the superscripts + and – refer to the +s disclina-

tion at x ¼ þa and the � s disclination at x ¼ �a,

respectively. While the flow velocities 
� at the two

defects can be different, the reorientation speed u is the

same for both disclinations.

3.4 Annihilation motion

We can now describe the motion of the two disclinations.

If we denote by x� the position of the respective disclina-

tions, their apparent velocities are then _x� ¼ 
� � u,

where the flow velocities can be obtained directly from

Equations (53) and (54). We express all lengths in terms

of L and all times in terms of � in (30) and obtain a

coupled system of two ordinary differential equations:

_xþ ¼ �ð�þsþ 1Þu� �þs2

xþ � x�
; ð55Þ

_x� ¼ �ð��s� 1Þuþ ��s2

xþ � x�
; ð56Þ

where we have set

�� :¼ �1�

2��
; ð57Þ

and u is a function of the defect distance d ¼ xþ � x�,

u ¼ � 4

dðd2 þ 4Þ lnðr2
cd2=ðd2 þ 4ÞÞ ; ð58Þ

see (31). For simplicity, we have retained the same

symbols for the rescaled quantities.

These equations allow one to assess directly the

asymmetry of the annihilation using the measure

� ¼ _xþ þ _x�

_xþ � _x�

¼ sð�þ þ ��Þud þ s2ð�þ � ��Þ
2ud þ sð�þ � ��Þud þ s2ð�þ þ ��Þ

: ð59Þ

We note that ud ! 0 both for d ! 0 and d !1,

and so in these limits �! ð�þ=�� � 1Þ=ð�þ=�� þ 1Þ.
Hence, the most important factor in determining

the asymmetry in the annihilation is the ratio

�þ=��.

To obtain quantitative results, we now focus on
the case s ¼ 1

2
and consider a situation similar to that

treated numerically in (5): we choose L = 100 nm,

rc = 2 nm comparable to the nematic correlation

length, �1 ¼ 0:04 Pas, K ¼ 10�11N, � ¼ 103 kgm�3,

and di ¼ 150 nm as the initial defect distance. With

these parameters, � ¼ 10�s. Figure 2 shows the

resulting annihilation. Curve (a) shows the pure

reorientational dynamics without flow, which corre-
sponds to �� ¼ 0. To obtain curve (b), we used our

estimate obtained above for the ratio �þ=�� ¼ 3:56,

and we set �þ ¼ 0:4. This value for �+, which is our

only fitting parameter, was chosen so that the result-

ing annihilation time corresponds to that found in

(5). Using these values for ��, we have plotted in

Figure 3 the anisotropy measure (59) as a function of

the disclination distance d for different cut-off
lengths. In both the limits for d ! 0 and d !1,

� 	 0:56, but for d ! 0 the convergence to this

value is very slow. The asymmetry is enhanced for

larger cut-off lengths, but, for given L, it decreases

for defect distances that are most relevant for the

annihilation, that is, for d < 2L.
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Figure 2. Defect annihilation (a) without flow and (b) with
flow.
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4. Conclusions

We have proposed a phenomenological model for

defect dynamics that accounts for both sources of

defect motion: reorientation and fluid flow. The reor-

ientation is treated in the usual way, neglecting flow.
The induced flow is accounted for by requiring the

contact forces on the defect to be balanced. We have

distinguished and analysed three different types of

force: an elastic force, a reorientational viscous force

and a drag viscous force. We have applied the model to

the annihilation of a pair of disclinations and found that

it predicts correctly the asymmetry in this process. While

for the small defect distances that have been analysed
numerically in (4–6) the reorientational viscous forces

contribute to the asymmetry, as they pull in the same

direction, for larger defect distances the difference in

the drag viscous force is the dominating factor. For

intermediate distances, the asymmetry was shown to

decrease, contrasting with the naive expectation that it

remains almost unchanged for all distances.

Application of our model to point defects seems
feasible: in that case both the elastic and the reorienta-

tional viscous force are proportional to the defect

radius, as is Stokes’s drag force on a sphere. An

indication of how to compute the viscous drag force

acting on point defects comes from the numerical

results in (20): there, the drag on configurations

with point defects was computed by employing

Ericksen–Leslie theory. We expect the balance of

forces on the defect to be again virtually independent
of the defect radius.
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Figure 3. Asymmetry measure � as a function of the defect
distance for different cut-off lengths.
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